Mathematics

Question

Write the equation of the line that passes through (-1, 8) and is parallel to the line that passes through (5, -1) and (2, -5).

1 Answer

  • Answer:

    [tex]\large\boxed{y=-\dfrac{3}{4}x+\dfrac{29}{4}}[/tex]

    Step-by-step explanation:

    [tex]\text{Let}\\\\k:y=m_1x+b_1,\ l:y=m_2x+b_2\\\\k\ ||\ l\iff m_1=m_2\\\\k\ \perp\ l\iff m_1m_2=-1\to m_2=-\dfrac{1}{m_1}\\\\=================================[/tex]

    [tex]\text{The formula of a slope:}\\\\m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

    [tex]\text{Calculate the slops:}\\\\(5,\ -1),\ (2,\ -5)\\\\m_1=\dfrac{-5-(-1)}{2-5}=\dfrac{-5+1}{-3}=\dfrac{-4}{-3}=\dfrac{4}{3}\\\\\text{Therefore}\\\\m_2=-\dfrac{1}{\frac{4}{3}}=-1\left(\dfrac{3}{4}\right)=-\dfrac{3}{4}\\\\\text{Put the value of slope and coordinates of the given point (-1, 8) }\\\text{to the equation of a line:}\\\\8=-\dfrac{3}{4}(-1)+b\\\\8=\dfrac{3}{4}+b\qquad\text{subtract}\ \dfrac{3}{4}\ \text{from both sides}\\\\7\dfrac{1}{4}=b\to b=\dfrac{29}{4}\\\\\text{Finally:}\\\\y=-\dfrac{3}{4}x+\dfrac{29}{4}[/tex]